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Abstract 

The dynamic structure factor of moderately concentrated polymer solutions is often multimodal, roughly consisting of fast and slow 
modes. Wang’s formulation of concentration fluctuations predicts that the slow mode disappears when the polymer and solvent components 
have identical partial specific volumes, but the prediction is not supported by the formulation of Onuki (J. Non-crystalline Solids, 1994,172- 
174, 1151) and that of Doi and Onuki as well (J. Phys. II (Paris), 1992, 2, 1631). The present paper shows that the primary origin of the 
disagreement is the difference in the basic equations of the two theories, in contrast to the prevailing notion that attributes it to the different 
constitutive equations assumed by the two theories for the partial stresses generated by concentration fluctuation. 0 1998 Elsevier Science 
Ltd. All rights reserved. 
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1. Introduction 

The dynamic structure factor S(q,t) (t is time and q the 
magnitude of the scattering vector) of moderately concen- 
trated polymer solutions (including semi-dilute ones) is 
usually not a single mode. The slow mode (s) appearing 
subsequent to a fast mode has been the subject of consider- 
able interest since the pioneering work of Brochard [l] and 
Adam and Delsanti [2] clarified that it reflects the viscoe- 
lastic deformation of a temporary polymer network due to 
the stress generated by concentration fluctuation. Recently, 
Wang [3-51 developed an elaborate theory of S(q,t) and 
predicted that the slow mode disappears in a system 
where the partial specific volumes of the polymer and 
solvent components are identical. This prediction, however, 
was not supported by Onuki [6] (and Doi and On&i [7] as 
well), who approached S(q,t) by a formulation that differed 
from Wang’s. It is the prevailing notion that the disagree- 
ment is due to the different assumptions taken by the two 
theories for the components of the stress. Thus, Wang [4,5] 
has claimed that the stress acting on the polymer is 
controlled by the gradient of the local-center-of-mass 
velocity, while Onuki and also Doi and Onuki have 
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considered physically reasonable to relate it to the gradient 
of the local velocity of the polymer component. No decision 
of which method is right has been made yet. 

The present paper aims to point out that the primary 
origin of the disagreement between Wang and Onuki is 
the difference in the basic equations of their formulations 
for the dynamics of concentration fluctuations, not the dif- 
ference in the assumptions for the stresses. We believe this 
remark is of interest in relation to the current dispute on the 
interpretation of dynamic light scattering measurements on 
semidilute polystyrene solutions [8,9]. 

2. Basic relations 

Though well-documented in existing literature [5], the 
basic relations needed for the subsequent analysis are 
enumerated here. 

We consider concentration fluctuations that take place in 
an isothermal equilibrium binary solution consisting of a 
solvent (component 1) and a monodisperse polymer 
(component 2). For simplicity, we assume that the 
solution is incompressible and the partial specific volumes 
v1 and v2 of the components are independent of the 
composition. 
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If the solution is viewed as a continuous fluid, the mass 
and momentum conservation laws give 

ap/at + V@l) = 0 (1) 

d(pu)ll3t + v+ml - a) = 0 (2) 

Here, p denotes the local solution density, u the velocity 
of the local center of mass, and u the local total stress 
tensor. 

The mass conservation for each component is expressed 

bY 

aCilat+ V'(CiUi)=O (i = 1,2) (3) 

where c, and ui are the local mass concentration and the 
local velocity of component i, respectively. The local com- 
position of the solution under consideration is uniquely 
determined by either cl or c2. Here we choose the polymer 
concentration c2 as the independent composition variable. 

The quantity u is expressed by 

pu = c,u, + c2u2 (4) 

and the quantity u by 

B= -pI+a1 +a2 (5) 

where p is the pressure, I the unit tensor, and ui the con- 
tribution of the stress generated by concentration fluctuation 
to component i and often called the partial stress for 
component i. 

The flux j, of component i relative to the local center of 
mass is defined by 

ji = Ci(Ui - U) (6) 

and obeys the relation 

j, +j2=0 (7) 

Hence it is sufficient for us to concern j2 only. 
With the subscript zero attached to the quantities at the 

equilibrium state of the solution, we define Gp(r,t), Gci(r,t), 
Gp(r,t), Gu(r,t), Gu(r,t), hi(r,t) and Gj,(r,t) by 

p(r, t) = PO + @(r, t) (8) 

Ci(T, t) = Cio + GCi(r, t) (9) 

p(r, t) =PO + k(r, t) (10) 

u(r, t) = u. + 6u(r, t) (11) 

u = u. + 6u(r, t) (12) 

Uj = UiO + GUi(r,t) (13) 

and 

ji = j, + 6ji(r, t) (14) 

Then these quantities signify the fluctuations of density, 
mass concentration of component i, pressure, total stress 
tensor, center-of-mass velocity, velocity of component i, 
and flux of component i at the position r and the time t. In 

what follows we take advantage of the fact that (~0, ua, Uio 
and jio are all zero. 

As usual, we restrict ourselves to the situation where 
concentration fluctuations are so small that only linear 
terms of all &attached quantities may be retained. Then it 
follows from Eqs. (1) and (2) that 

asplat = - p,v&l (15) 

p()(&llht) = V& (16) 

and from combination of Eqs. (3) and (6) that 

&c2/i3t = - V4j, (17) 

These three equations allow determination of &c2(r,t), 
Gp(r,t) and Gu(r,t) when coupled with appropriate theories 
for ji and u. 

3. Wang’s theory 

Wang [3] started his formulation by choosing, for the ji, 
Onsager’s flux equations familiar in the irreversible thermo- 
dynamics for multicomponent fluids. Thus, for the binary 
solution under consideration his starting equations were 

-j, = %,VP, + W12Vm (18) 

- .i2 = Q21 Vcll + fi22Vh (19) 

where the f12, are the Onsager phenomenological coeffi- 
cients which obey the relations 

521, = -a,, = - Q2, = n22 = Q (20) 

and pi is the chemical potential of component i. Since j i and 
VcLi are zero for the solution at equilibrium, it follows from 
Eqs. (18) and (19) that 

- Sj, = QllVGpcc, + fl12V6p2 (21) 

- S.i2 = Q21V8p1+ Q22V61.42 (22) 

To develop an analysis from these, we first use Eq. (20) to 
rewrite Eq. (22) as 

Sj, = - Q(VGp2 - V&L,) (23) 

and utilize the fact that the Gibbs-Duhem relation at con- 
stant temperature dp = C&L, + c2dp2 gives 

hl - &CL2 = - (WCZO) +(Po~C2o)~cL, (24) 

correct to the first order of fluctuations. According to the 
thermodynamics of incompressible systems at constant tem- 
perature, we have 

&L, = v,sp - v,l-& (25) 

where II stands for (&r/~k~)r,~, with K denoting the osmotic 
pressure of the solution and T the absolute temperature. 
Hence, Eq. (24) can be written 

&l - h2 = (VI - v2)k - (PO”l~C2O)~C2 (26) 



T. Einaga, H. FujitdPolymer 40 (1999) 565-568 567 

If the result after inserting this into Eq. (23) is substituted components per unit volume of the solution. It follows from 
into Eq. (17) it follows that these equations that 

,&/dt = DV26c2 - (v, - v2)(c,oc2ol~o~, V2Sp (27) 

where D is the (mutual) diffusion coefficient defined by 

D=c,ov,~i- (28) 

with the friction coefficient { related to s2 by 

[ = C,oC204Po~) (29) 

Wang [3] has introduced a dimensionless parameter p 
defined by 

P = (C20/Po>(aPolaC20>T,, (30) 

which, under the assumption that both vI and v2 are inde- 
pendent of the composition, gives 

P = (C2o~Po)(h - V2Yh (31) 

Therefore, the coefficient of V26p in Eq. (27) may be written 
-c ,ov ,0/S; so that it is directly proportional to p. 

6u2 - 6u, = {-‘[v&L, - V&L, - (V&,/c,o) + (V&J2/c2(,)] 

(36) 

correct to the first order of fluctuations, where 

!Y F Po!T”~(cloc2o) (37) 

On&i neglected density fluctuation due to composition 
fluctuation, which, according to Wang’s definition of 0, 
means to assume fl= 0 or v, = v2. Apparently, this approxi- 
mation is neither realistic nor desirable. 

As shown below, we can carry through the analysis with- 
out it. To this end we utilize the relation 

j2 = (CI c2/~>@2 - UI I (38) 

which can be derived from Eqs. (4) and (6). Combining this 
with Eq. (36) gives 

Q2 = - ~o~~o~Po~XV~P~ - WI - (V4~2/~20) 

Now we assume that the inertia effect may be neglected. 
Then, Eq. (16) gives V& = 0, so that Eq. (5) yields 

V6p = V&l + V&Q (32) 

This allows us to eliminate V&p from Eq. (27), giving 

d6c2/dt = DV26c2 - (clOv,&-)V~(V~~ul + V&J~) (33) 

where Eq. (31) has been used. This is the differential 
equation for 6c2(r,t) from Wang’s formulation. To solve it 
we need theoretical information about the V&J~, which, 
however, is outside the scope of the present paper. 

+ (V.~a,/c,o)l (39) 

In the same way as reaching Eq. (33) from Eq. (23), it is 
possible to derive the following from this equation: 

&c2/dt = DV26c2 - (clovl~/~)V~(V~~u, + V.6u2) 

The first term on the right-hand side of Eq. (33) represents 
the rate of change in polymer concentration fluctuation due 
to diffusion and the second term the one due to the deforma- 
tion of polymer chains by partial stresses. The latter 
vanishes at fi = 0, so that Eq. (33) predicts that no viscoe- 
lastic slow mode appears in S(q,t) when the two components 
have identical partial specific volumes. This is just Wang’s 
prediction. Importantly, it is the consequence from the 
choice of Onsager’s flux equations for the j i and holds hav- 
ing nothing to do with the constitutive equations for the 
partial stresses. 

+ (C2rJV2/~)V~(V~GU, ) - (c,ov, /r)v.(v.su,) (40) 

which corresponds to Eq. (33) from Wang’s formulation. It 
is seen that Eq. (40) contains two more terms on the right- 
hand side than Eq. (33). Noticing that (v, - vz)c10 and (v, - 
v~)c~~ are the same order as povl and povl, we find that these 
additional terms are comparable in order with the second 
term in Eq. (40) [or Eq. (33)] for either V(V&,) or 
V(V&J~). Thus, Eq. (40) predicts that, when fl = 0 at 
which the second term vanishes, the rate of change in poly- 
mer momentum has contributions from the partial stresses 
that cannot be neglected. Therefore, S(q,t) may exhibit a 
viscoelastic slow mode in systems where vl and v2 have 
identical values. In other words, Onuki’s formulation does 
not support Wang’s prediction. This conclusion is the direct 
consequence from Onuki’s basic equations of motion and 
bears no relation to the constitutive equations for the partial 
stresses. 

4. Onuki’s theory 5. Remarks 

Onuki’s formulation [6] differs from Wang’s in that it 
starts from the equations of motion for the respective com- 
ponents. In the approximation of neglecting inertia effects, 
they read 

- c,vp, - {Ju, - u2) + V.a, = 0 (34) 

- CzV& - {“(U2 - u,) + V.a2 = 0 (35) 

where ry denotes the friction coefficient between the two 

The above analysis has proved that the disagreement 
between Wang and Onuki as to the prediction for the slow 
mode of S(q,t) primarily arises from the difference in the 
starting equations of their formulations. To account for this 
difference we consider Eqs. (34) and (35) from which the 
V.u, and V.uz terms are removed. Then, in place of Eq. (39), 
we can derive 

ki2 = - (c10~20b0iWh42 - Wl) (41) 



568 Y. Einaga, H. Fujitu/Polymer 40 (1999) 565-568 

which agrees with Eq. (23) because { is related to Q by 
Eq. (29). This indicates that Wang’s theory corresponds to 
Onuki’s theory subject to the assumption that the gradient of 
the partial stress has no effect on the rate of change in 
momentum for each component. We believe, this assump- 
tion is physically inadequate for entangled polymer 
solutions. 

Onuki [6] has not described how to derive his equations 
of motion, so that some may question their theoretical sig- 
nificance. In this connection, it is relevant to remark that 
they are equivalent to Bearman-Kirkwood partial equations 
of motion, simplified by neglecting the nonlinear and inertia 
terms [lo]. Thus, the validity of Onuki’s theory depends on 
that of the Bearman-Kirkwood theory [lo]. Bearman’s flux 
equations [ 1 l] are another deduction from the latter. There- 
fore, it is not surprising that their use as the starting equation 
for the formulation of concentration fluctuations leads to the 
same results as Onuki’s theory does (see Appendix A). 

Appendix A 

Bearman’s flux equations for the binary solution under 
consideration read 

-.it =%I& +a1222 (Al) 

- j2 = Q21&+ Q22Z2 L42) 

where, in the approximation neglecting both inertia and 
nonlinear effects, Zi(i = 1, 2) is given by 

Zi = V/J.i - (l/Ci)V’ai (A3) 

According to Bearman, the Zi satisfy the relation 

ClZl + c2z2 = - V.0 (A4) 

Substitution of Eq. (A3) gives 

CIVPl +c2vcL2 =vP (A3 

Though not shown here, this equation holds even when Zi is 
not simplified by the approximation mentioned earlier. Thus 
we see that the Gibbs-Duhem relation is valid within the 
framework of the Bearman-Kirkwood theory. 

Applying Eqs. (A2) and (A3) to fluctuations, with 
Eqs. (20) and (29) taken into account, we get 

G2 = (c1oc2oh3oiXW1 - W2 - PJah0) + (C74~2/~20)1 

(A@ 

This agrees with Eq. (39), leading to the conclusion that 
choosing Bearman’s flux equations for the formulation of 
concentration fluctuations is equivalent to starting from 
Onuki’s equations of motion, Eqs. (34) and (35). 
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